ElGamal¶
Overview¶
The security of the ElGamal algorithm is based on the difficulty of solving the discrete logarithm problem. It was proposed in 1984 and is also a double-key cryptosystem, which can be used for both encryption and digital signature.
If we assume that p is a decimal prime of at least 160 bits, and p-1 has a large prime factor, and g is the generator of Z_p^*, and y \in Z_p^* . So how to find a unique integer x (0\leq x \leq p-2) that satisfies g^x \equiv y \bmod p is algorithmically difficult, here is x as x=log_gy .
Fundamental¶
Here we assume that A wants to send a message m to B.
Key Generation¶
The basic steps are as follows
- It is difficult to choose a prime p that is large enough to solve the discrete logarithm problem on Z_p.
- Select the generator g of Z_p^*.
- Randomly select the integer k, 0\leq k \leq p-2 , and calculate g^k \equiv y \bmod p .
The private key is {k} and the public key is {p,g,y}.
Encryption¶
A selects the random number r \in Z_{p-1} and encrypts the plaintext E_k(m,r)=(y_1,y_2) . Where y_1 \equiv g^r \bmod p , y_2 \equiv my^r \bmod p .
Decryption¶
D_k(y_1,y_2)=y_2(y_1^k)^-1 \bmod p \equiv m(g^k)^r(g^{rk})^{-1} \equiv m \bmod p 。
Difficult¶
Although we know y1, we have no way of knowing the corresponding r.
2015 MMA CTF Alicegame¶
Here we take Alicegame in MMA-CTF-2015 in 2015 as an example. This question was originally difficult to do when the source code was not given, because this gives an m, and gives an r to get the encrypted result, which is too difficult to think about.
Let's analyze the source code briefly. First, the program originally generated pk and sk.
(pk, sk) = genkey(PBITS)
Where the genkey function is as follows
def genkey(k):
p = getPrime(k)
g = random.randrange (2, p)
x = random.randrange (1, p-1)
h = pow(g, x, p)
pk = (p, g, h)
sk = (p, x)
return (pk, sk)
p is the prime number of the k position, g is the book in the range of (2, p), and x is in the range of (1, p-1). And calculated h \equiv g^x \bmod p . Seeing this, I almost know that this should be an ElGamal encryption on a number field. Where pk is the public key and sk is the private key.
The program then outputs 10 times m and r. And, use the following function to encrypt
def encrypt(pk, m, r = None):
(p, g, h) = pk
if r is None:
r = random.randrange (1, p-1)
c1 = pow(g, r, p)
c2 = (m * pow(h, r, p)) % p
return (c1, c2)
Its encryption method is indeed ElGamal encryption.
Finally the program encrypts the flag. At this time r is by the program itself random.
Analysis, here we can control m and r in ten rounds, and
c_1 \equiv g^r \bmod p
c_2 \equiv m * h^{r} \bmod p
If we set
- r=1, m=1, then we can get c_1=g, c_2=h.
- r=1, m=-1, then we can get c_1=g, c_2 = ph. Then we can get the prime number p.
What is the use of prime p? The number of bits in p is around 201, which is very big.
But ah, after it generated the prime number p, it was not checked. We have said before that p-1 must have a large factor, and if there is a small prime factor, then we can attack. The attack mainly uses the baby step-giant step and Pohlig-Hellman algorithm algorithm. If you are interested, you can look at it. Here, the sage itself has a function to calculate the discrete logarithm, which can handle such a situation. See discrete_log .
The specific code is as follows, it should be noted that this memory consumption is relatively large, do not just take the virtual machine to run. . . There is also this Nima interaction that makes me a headache,,,,
import socket
from Crypto.Util.number import *
from sage.all import *
def get_maxfactor(N):
f = factor(N)
print 'factor done'
return f[-1][0]
maxnumber = 1 << 70
i = 0
while 1:
print 'cycle: ',i
sock = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("localhost", 9999))
sock.recv(17)
# get g,h
sock.recv(512)
sock.sendall("1\n")
sock.recv(512)
sock.sendall("1\n")
data = sock.recv(1024)
print data
if '\n' in data:
data =data[:data.index('\n')]
else:
# receive m=
sock.recv(1024)
(g,h) = eval(data)
# get g,p
sock.sendall("-1\n")
sock.recv(512)
sock.sendall("1\n")
data = sock.recv(1024)
print data
if '\n' in data:
data = data[:data.index('\n')]
else:
# receive m=
sock.recv(512)
(g,tmp) = eval(data)
p = tmp+h
tmp = get_maxfactor(p-1)
if tmp<maxnumber:
print 'may be success'
# skip the for cycle
sock.sendall('quit\n');
data = sock.recv(1024)
print 'receive data: ',data
data = data[data.index(":")+1:]
(c1,c2)=eval(data)
# generate the group
g = Mod(g, p)
h = Mod(h, p)
c1 = Mod(c1, p)
c2 = Mod(c2, p)
x = discrete_log(h, g)
print "x = ", x
print "Flag: ", long_to_bytes(long(c2 / ( c1 ** x)))
sock.sendall('quit\n')
sock.recv(1024)
sock.close()
i += 1
In the end, the computer is not enough memory, it is not calculated, and sometimes it will collapse and run a few times. .
2018 Code Blue lagalem¶
The title is described below
from Crypto.Util.number import *
from key import FLAG
size = 2048
rand_state = getRandomInteger (size // 2)
def keygen(size):
q = getPrime(size)
k = 2
while True:
p = q * k + 1
if isPrime(p):
break
k + = 1
g = 2
while True:
if pow(g, q, p) == 1:
break
g += 1
A = getRandomInteger(size) % q
B = getRandomInteger(size) % q
x = getRandomInteger(size) % q
h = pow(g, x, p)
return (g, h, A, B, p, q), (x,)
def rand(A, B, M):
global rand_state
rand_state, ret = (A * rand_state + B) % M, rand_state
return right
def encrypt(pubkey, m):
g, h, A, B, p, q = pubkey
assert 0 < m <= p
r = rand(A, B, q)
c1 = pow(g, r, p)
c2 = (m * pow(h, r, p)) % p
return (c1, c2)
# pubkey, privkey = keygen(size)
m = bytes_to_long(FLAG)
c1, c2 = encrypt(pubkey, m)
c1_, c2_ = encrypt(pubkey, m)
print pubkey
print(c1, c2)
print(c1_, c2_)
It can be seen that the algorithm is an ElGamal encryption, which gives the same plaintext two sets of encrypted results. The characteristic is that the random number r used is generated by the linear congruential generator, then we know
c2 \equiv m * h^{r} \bmod p
c2\_ \equiv m*h^{(Ar+B) \bmod q} \equiv m*h^{Ar+B}\bmod p
then
c2^A*h^B/c2\_ \equiv m^{A-1}\bmod p
Among them, c2, c2_, A, B, h are known. Then we know
m^{A-1} \equiv t \bmod p
We assume that we know a primitive root g of p, then we can assume
g^x \equiv t
g^y \equiv m
then
g^{y(A-1)}\equiv g^x \bmod p
then
y(A-1) \equiv x \bmod p-1
Then we know
y(A-1)-k(p-1)=x
Here we know A, p, x, then we can use the extended Euclidean theorem to find
s(A-1)+w(p-1)=gcd(A-1,t-1)
If gcd(A-1, t-1)=d, then we calculate directly
t^s \equiv m^{s(A-1)} \equiv m^d \bmod p
If d=1, then m is directly known.
If d is not 1, then it is a bit of a hassle. .
This problem is exactly d=1, so it can be solved easily.
import gmpy2
data = open('./transcript.txt').read().split('\n')
g, h, A, B, p, q = eval(data[0])
c1, c2 = eval(data[1])
c1_, c2_ = eval(data[2])
tmp = gmpy2.powmod(c2, A, p) * gmpy2.powmod(h, B, p) * gmpy2.invert(c2_, p)
tmp = tmp % p
print 't=', tmp
print 'A=', A
Print '= p, p
gg, x, y = gmpy2.gcdext(A - 1, p - 1)
print gg
m = gmpy2.powmod(tmp, x, p)
print hex(m)[2:].decode('hex')
flag
➜ 2018-CodeBlue-lagalem git:(master) ✗ python exp.py
t= 24200833701856688878756977616650401715079183425722900529883514170904572086655826119242478732147288453761668954561939121426507899982627823151671207325781939341536650446260662452251070281875998376892857074363464032471952373518723746478141532996553854860936891133020681787570469383635252298945995672350873354628222982549233490189069478253457618473798487302495173105238289131448773538891748786125439847903309001198270694350004806890056215413633506973762313723658679532448729713653832387018928329243004507575710557548103815480626921755313420592693751934239155279580621162244859702224854316335659710333994740615748525806865323
A= 22171697832053348372915156043907956018090374461486719823366788630982715459384574553995928805167650346479356982401578161672693725423656918877111472214422442822321625228790031176477006387102261114291881317978365738605597034007565240733234828473235498045060301370063576730214239276663597216959028938702407690674202957249530224200656409763758677312265502252459474165905940522616924153211785956678275565280913390459395819438405830015823251969534345394385537526648860230429494250071276556746938056133344210445379647457181241674557283446678737258648530017213913802458974971453566678233726954727138234790969492546826523537158
p= 36416598149204678746613774367335394418818540686081178949292703167146103769686977098311936910892255381505012076996538695563763728453722792393508239790798417928810924208352785963037070885776153765280985533615624550198273407375650747001758391126814998498088382510133441013074771543464269812056636761840445695357746189203973350947418017496096468209755162029601945293367109584953080901393887040618021500119075628542529750701055865457182596931680189830763274025951607252183893164091069436120579097006203008253591406223666572333518943654621052210438476603030156263623221155480270748529488292790643952121391019941280923396132717
1
CBCTF {183a3ce8ed93df613b002252dfc741b2}
Reference¶
本页面的全部内容在 CC BY-NC-SA 4.0 协议之条款下提供,附加条款亦可能应用。